116 research outputs found

    Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks

    Get PDF
    Gene and protein networks are very important to model complex large-scale systems in molecular biology. Inferring or reverseengineering such networks can be defined as the process of identifying gene/protein interactions from experimental data through computational analysis. However, this task is typically complicated by the enormously large scale of the unknowns in a rather small sample size. Furthermore, when the goal is to study causal relationships within the network, tools capable of overcoming the limitations of correlation networks are required. In this work, we make use of Bayesian Graphical Models to attach this problem and, specifically, we perform a comparative study of different state-of-the-art heuristics, analyzing their performance in inferring the structure of the Bayesian Network from breast cancer data

    StreamFlow: cross-breeding cloud with HPC

    Get PDF
    Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the workflow graph with the declarative description of potentially complex execution environments, and that makes it possible the execution onto multiple sites not sharing a common data space. StreamFlow is then exemplified on a novel bioinformatics pipeline for single-cell transcriptomic data analysis workflow.Comment: 30 pages - 2020 IEEE Transactions on Emerging Topics in Computin

    A Logistic Model Tree Solution

    Get PDF
    Beretta, S., Castelli, M., Gonçalves, I., Kel, I., Giansanti, V., & Merelli, I. (2018). Improving eQTL Analysis Using a Machine Learning Approach for Data Integration: A Logistic Model Tree Solution. Journal of Computational Biology, 25(10), 1091-1105. DOI: 10.1089/cmb.2017.0167Expression quantitative trait loci (eQTL) analysis is an emerging method for establishing the impact of genetic variations (such as single nucleotide polymorphisms) on the expression levels of genes. Although different methods for evaluating the impact of these variations are proposed in the literature, the results obtained are mostly in disagreement, entailing a considerable number of false-positive predictions. For this reason, we propose an approach based on Logistic Model Trees that integrates the predictions of different eQTL mapping tools to produce more reliable results. More precisely, we employ a machine learning-based method using logistic functions to perform a linear regression able to classify the predictions of three eQTL analysis tools (namely, R/qtl, MatrixEQTL, and mRMR). Given the lack of a reference dataset and that computational predictions are not so easy to test experimentally, the performance of our approach is assessed using data from the DREAM5 challenge. The results show the quality of the aggregated prediction is better than that obtained by each single tool in terms of both precision and recall. We also performed a test on real data, employing genotypes and microRNA expression profiles from Caenorhabditis elegans, which proved that we were able to correctly classify all the experimentally validated eQTLs. These good results come both from the integration of the different predictions, and from the ability of this machine learning algorithm to find the best cutoff thresholds for each tool. This combination makes our integration approach suitable for improving eQTL predictions for testing in a laboratory, reducing the number of false-positive results.authorsversionpublishe

    The Genome Conformation As an Integrator of Multi-Omic Data: The Example of Damage Spreading in Cancer.

    Get PDF
    Publicly available multi-omic databases, in particular if associated with medical annotations, are rich resources with the potential to lead a rapid transition from high-throughput molecular biology experiments to better clinical outcomes for patients. In this work, we propose a model for multi-omic data integration (i.e., genetic variations, gene expression, genome conformation, and epigenetic patterns), which exploits a multi-layer network approach to analyse, visualize, and obtain insights from such biological information, in order to use achieved results at a macroscopic level. Using this representation, we can describe how driver and passenger mutations accumulate during the development of diseases providing, for example, a tool able to characterize the evolution of cancer. Indeed, our test case concerns the MCF-7 breast cancer cell line, before and after the stimulation with estrogen, since many datasets are available for this case study. In particular, the integration of data about cancer mutations, gene functional annotations, genome conformation, epigenetic patterns, gene expression, and metabolic pathways in our multi-layer representation will allow a better interpretation of the mechanisms behind a complex disease such as cancer. Thanks to this multi-layer approach, we focus on the interplay of chromatin conformation and cancer mutations in different pathways, such as metabolic processes, that are very important for tumor development. Working on this model, a variance analysis can be implemented to identify normal variations within each omics and to characterize, by contrast, variations that can be accounted to pathological samples compared to normal ones. This integrative model can be used to identify novel biomarkers and to provide innovative omic-based guidelines for treating many diseases, improving the efficacy of decision trees currently used in clinic

    In silico saturation mutagenesis and docking screening for the analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study

    Get PDF
    BACKGROUND: The design of mutants in protein functional regions, such as the ligand binding sites, is a powerful approach to recognize the determinants of specific protein activities in cellular pathways. For an exhaustive analysis of selected positions of protein structure large scale mutagenesis techniques are often employed, with laborious and time consuming experimental set-up. 'In silico' mutagenesis and screening simulation represents a valid alternative to laboratory methods to drive the 'in vivo' testing toward more focused objectives. RESULTS: We present here a high performance computational procedure for large-scale mutant modelling and subsequent evaluation of the effect on ligand binding affinity. The mutagenesis was performed with a 'saturation' approach, where all 20 natural amino acids were tested in positions involved in ligand binding sites. Each modelled mutant was subjected to molecular docking simulation and stability evaluation. The simulated protein-ligand complexes were screened for their impairment of binding ability based on change of calculated Ki compared to the wild-type. An example of application to the Endothelial Protein C Receptor residues involved in lipid binding is reported. CONCLUSION: The computational pipeline presented in this work is a useful tool for the design of structurally stable mutants with altered affinity for ligand binding, considerably reducing the number of mutants to be experimentally tested. The saturation mutagenesis procedure does not require previous knowledge of functional role of the residues involved and allows extensive exploration of all possible substitutions and their pairwise combinations. Mutants are screened by docking simulation and stability evaluation followed by a rationally driven selection of those presenting the required characteristics. The method can be employed in molecular recognition studies and as a preliminary approach to select models for experimental testing

    A multilevel data integration resource for breast cancer study

    Get PDF
    BACKGROUND: Breast cancer is one of the most common cancer types. Due to the complexity of this disease, it is important to face its study with an integrated and multilevel approach, from genes, transcripts and proteins to molecular networks, cell populations and tissues. According to the systems biology perspective, the biological functions arise from complex networks: in this context, concepts like molecular pathways, protein-protein interactions (PPIs), mathematical models and ontologies play an important role for dissecting such complexity. RESULTS: In this work we present the Genes-to-Systems Breast Cancer (G2SBC) Database, a resource which integrates data about genes, transcripts and proteins reported in literature as altered in breast cancer cells. Beside the data integration, we provide an ontology based query system and analysis tools related to intracellular pathways, PPIs, protein structure and systems modelling, in order to facilitate the study of breast cancer using a multilevel perspective. The resource is available at the URL http://www.itb.cnr.it/breastcancer. CONCLUSIONS: The G2SBC Database represents a systems biology oriented data integration approach devoted to breast cancer. By means of the analysis capabilities provided by the web interface, it is possible to overcome the limits of reductionist resources, enabling predictions that can lead to new experiments
    • …
    corecore